在数学学习过程中,对有些具有特殊结构,且结论又具有一般性的数学问题我们常将其作为一个数学模型加以识记,以积累和丰富自己的问题解决经验.

【结论发现】小明在处理教材第43页第21题后发现:三角形的一个内角平分线与另一内角的外角平分线的夹角的度数是三角形第三内角度数的一半.
【结论探究】
(1)如图1,在△ABC中,点E是△ABC内角∠ACB平分线CE与外角∠ABD的平分线BE的交点,则有∠E=12∠A请给出证明过程.
请直接应用上面的“结论发现”解决下列问题:
【简单应用】
(2)如图2,在△ABC中,∠ABC=40°.延长BA至G,延长AC至H,已知∠BAC、∠CAG的角平分线与∠BCH的角平分线及其反向延长线交于E、F,求∠F的度数;
【变式拓展】
(3)如图3,四边形ABCD的内角∠BCD与外角∠ABG的平分线形成如图所示形状.
①已知∠A=150°,∠D=80°,求∠E+∠F的度数;
②直接写出∠E+∠F与∠A+∠D的关系.
1
2
【答案】(1)证明见解析过程;
(2)70°;
(3)①205°;
②2(∠F+∠E)=∠A+∠D+180°.
(2)70°;
(3)①205°;
②2(∠F+∠E)=∠A+∠D+180°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:357引用:4难度:0.4