如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),按此方法,若点C的坐标为(2,m,m-2),则m=( )
【考点】等边三角形的性质;规律型:数字的变化类.
【答案】C
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 14:0:0组卷:71引用:1难度:0.6
相似题
-
1.等边△ABC的周长为12cm,则它的面积为cm2.
发布:2025/6/15 13:0:6组卷:339引用:20难度:0.7 -
2.已知,△ABC是等边三角形,将一块含有30°角的直角三角板DEF如图放置,让三角板在BC所在的直线上向右平移,如图1,当点E与点B重合时,点A恰好落在三角形的斜边DF上.
(1)利用图1证明:EF=2BC;
(2)在三角板的平移过程中,在图2中线段EB=AH是否始终成立(假定AB,AC与三角板斜边的交点为G、H)?如果成立,请证明;如果不成立,请说明理由.发布:2025/6/15 12:30:1组卷:780引用:8难度:0.3 -
3.等边△ABC的两条角平分线BD和CE交于点I,则∠BIC等于( )
发布:2025/6/15 12:30:1组卷:445引用:12难度:0.7