试卷征集
加入会员
操作视频

如图,四边形OABC是一张长方形纸片,将其放在平面直角坐标系中,使得点O与坐标原点重合,点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),D的坐标为(2,4).现将纸片沿过D点的直线折叠,使顶点C落在线段AB上的点F处,折痕与y轴的交点记为E.
(1)求点F的坐标和∠FDB的大小;
(2)在x轴正半轴上是否存在点Q,满足S△QDE=S△CDE,若存在,求出Q点坐标,若不存在请说明理由;
(3)点P在直线DE上,且△PEF为等腰三角形,请直接写出点P的坐标.

【考点】四边形综合题
【答案】(1)(3,4-
3
),60°;(2)存在,(4-
4
3
3
,0);(3)(-
3
,1-2
3
),(
3
,7-2
3
),(3,4+
3
),(1,4-
3
).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/11 3:0:1组卷:393引用:2难度:0.3
相似题
  • 1.(1)如图1,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,对角线BD=8,求四边形ABCD的面积;
    (2)如图2,园艺设计师想在正六边形草坪一角∠BOC内改建一个小型的儿童游乐场OMAN.其中OA平分∠BOC,OA=100米,∠BOC=120°,点M,N分别在射线OB和OC上,且∠MAN=90°,为了尽可能的少破坏草坪,要使游乐场OMAN面积最小,你认为园林规划局的想法能实现吗?若能,请求出游乐场OMAN面积的最小值;若不能,请说明理由.

    发布:2025/6/9 15:0:1组卷:243引用:2难度:0.2
  • 2.如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.
    (1)请判断线段AE和CD的数量关系,并说明理由;
    (2)当A、E、F三点在同一直线上时,求CD的长;
    (3)设AE的中点为M,连接FM,试求线段FM长的取值范围.

    发布:2025/6/9 15:0:1组卷:209引用:1难度:0.1
  • 3.[阅读理解]
    “倍长中线”是初中数学一种重要的思想方法.如图1,在△ABC中,AD是BC边上的中线,若延长AD至E,使DE=AD,连接CE,可根据SAB证明△ABD≌△ECD,则AB=EC.

    [问题提出]
    (1)如图2,平行四边形ABCD中,点E为CD边的中点,在BC边上找一点F,使得AF=AD+CF(要求:用直尺和圆规作图,保留作图痕迹,不写作法).
    (2)按照你(1)中的作图过程证明:AF=AD+CF.

    发布:2025/6/9 15:30:2组卷:265引用:3难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正