试卷征集
加入会员
操作视频

【问题背景】△ABC中,∠ABC=90°,AB=BC,点D为直线BC上一点.
【初步探究】(1)如图1,当点D在线段BC上时,连接AD,过点A作AE⊥AD于点A,且AD=AE,过点E作EH⊥AC于H点,交AB于F点.求证:EF=AC.

请将证明过程补充完整:
证明:∵AE⊥AD,
∴∠EAD=90°
即∠EAH+∠CAD=90°
∵EH⊥AC,
∴∠AHE=90°,
∴∠EAH+∠AEH=90°(
直角三角形的两锐角互余
直角三角形的两锐角互余
),
∴∠AEH=
∠CAD
∠CAD
同角的余角相等
同角的余角相等
).
∵△ABC为等腰直角三角形,∠ABC=90°,
∴∠BAC=∠ACB=45°.
在Rt△AHF中,
∠AFE=180°-∠AHF-∠HAF=180°-90°-45°=45°,
∴∠AFE=∠DCA=45°.
在△AEF与△DAC中,
AEF
=∠
DAC
AFE
=∠
DCA
ㅤㅤ

∴△AEF≌△DAC,
∴EF=AC(
全等三角形的对应边相等
全等三角形的对应边相等
).
【推广探究】(2)如图2,若点D为边BC延长线上一点,其他条件不变,则(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.
【拓展应用】(3)若AC=6,AH=2,其它条件不变时,EH=
4或8
4或8

【考点】三角形综合题
【答案】直角三角形的两锐角互余;∠CAD;同角的余角相等;全等三角形的对应边相等;4或8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/12 8:0:8组卷:1291引用:1难度:0.5
相似题
  • 1.如图,三角形ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).
    (1)求三角形OAB的面积;
    (2)若O,B两点的位置不变,点M在x轴上,则点M在什么位置时,三角形OBM的面积是三角形OAB的面积的2倍?
    (3)若O,A两点的位置不变,点N由点B向上或向下平移得到,则点N在什么位置时,三角形OAN的面积是三角形OAB的面积的2倍?

    发布:2025/6/17 6:30:2组卷:331引用:2难度:0.3
  • 2.(1)阅读理解:
    如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是

    (2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.

    发布:2025/6/17 11:0:1组卷:624引用:7难度:0.4
  • 3.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
    (1)求证:AD=BE;
    (2)求∠AEB的度数;
    (3)探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM⊥DE于点M,连接BE.
    ①∠AEB的度数为
    °;
    ②线段DM,AE,BE之间的数量关系为
    .(直接写出答案,不需要说明理由)

    发布:2025/6/17 6:0:2组卷:365引用:3难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正