综合与实践-----探究特殊三角形中的相关问题.
问题情境:
某校学习小组在探究学习过程中,将两块完全相同的且含60°角的直角三角板ABC和AFE按如图1所示位置放置.现将Rt△AEF绕A点按逆时针方向旋转α(0°<α<90°),如图2,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)初步探究:
勤思小组的同学提出:当旋转角α=60°或15°60°或15°时,△AMC是等腰三角形;
(2)深入探究:
敏学小组的同学提出:在旋转过程中.如果连接AP,CE,那么AP所在的直线是线段CE的垂直平分线,请帮他们证明;
(3)拓展延伸:
在旋转过程中,△CPN是否能成为直角三角形?若能,请求出旋转角α的度数;若不能,请说明理由.

【考点】三角形综合题.
【答案】60°或15°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/3 13:0:4组卷:138引用:2难度:0.3
相似题
-
1.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF.
(1)如图1,求证:∠BED=∠AFD;
(2)如图1,求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=4,CF=3,求△DEF的面积.发布:2024/12/23 14:0:1组卷:216引用:3难度:0.2 -
2.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
(1)当∠AFD=°时,DF∥AC;当∠AFD=°时,DF⊥AB;
(2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求∠APD的度数;
(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.发布:2024/12/23 18:30:1组卷:1755引用:10难度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),动点P从点A出发,在线段AD上,以每秒1个单位的速度向点D运动:动点Q从点C出发,在线段BC上,以每秒2个单位的速度向点B运动,点P、Q同时出发,当其中一个点到达终点时,另一个点随之停止运动,设运动时间为t(秒).
(1)当t=秒时,PQ平分线段BD;
(2)当t=秒时,PQ⊥x轴;
(3)当时,求t的值.∠PQC=12∠D发布:2024/12/23 15:0:1组卷:185引用:3难度:0.1