试卷征集
加入会员
操作视频

探究题
已知:如图1,AB∥CD,CD∥EF.
求证:∠B+∠BDF+∠F=360°.
老师要求学生在完成这道教材上的题目证明后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?
(1)小颖首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小额用到的平行线性质可能是
两直线平行同旁内角互补
两直线平行同旁内角互补

(2)接下来,小颖用《几何画板》对图形进行了变式,她先画了两条平行线AB、EF,然后在平行线间画了一点D,连接BD,DF后,用鼠标拖动点D,分别得到了图①②③,小颖发现图②正是上面题目的原型,于是她由上题的结论猜想到图①和③中的∠B、∠BDF与∠F之间也可能存在着某种数量关系.于是她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.

请你在小颖操作探究的基础上,继续完成下面的问题:
①猜想图①中∠B、∠BDF与∠F之间的数量关系并加以证明:
②补全图③,直接写出∠B、∠BDF与∠F之间的数量关系:
∠F=∠D+∠B
∠F=∠D+∠B

(3)学以致用:一个小区大门栏杆的平面示意图如图2所示,BA垂直地面AE于A,CD平行于地面AE,若∠BCD=150°,则∠ABC=
120°
120°

【答案】两直线平行同旁内角互补;∠F=∠D+∠B;120°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:967引用:6难度:0.3
相似题
  • 1.如图,D是AB上一点,E是AC上一点,∠ADE=65°,∠B=65°,∠AED=45°.求∠C的度数.

    发布:2025/1/23 8:0:2组卷:233引用:1难度:0.8
  • 2.如图,∠ABC+∠ECB=180°,∠P=∠Q.
    求证:∠1=∠2.
    根据图形和已知条件,请补全下面这道题的解答过程.
    证明:∵∠ABC+∠ECB=180°

    ∴AB∥ED

    ∴∠ABC=∠BCD

    又∵∠P=∠Q(已知),
    ∴PB∥

    ∴∠PBC=

    又∵∠1=∠ABC-
    ,∠2=∠BCD-

    ∴∠1=∠2(等量代换).

    发布:2024/12/23 20:0:2组卷:1149引用:10难度:0.7
  • 3.如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.
    (1)DE和BC平行吗?
    (2)∠C是多少度?为什么?

    发布:2025/1/23 8:0:2组卷:73引用:2难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正