如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足|a+3|+(c-8)2=0.

(1)a=-3-3,b=11,c=88;
(2)若将数轴折叠,使得A点与C点重合,则点B与数 44表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,那么3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
【考点】几何变换综合题.
【答案】-3;1;8;4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/26 9:0:2组卷:50引用:2难度:0.5
相似题
-
1.如图,在Rt△ABC和Rt△DEF中,∠ACB=∠F=90°,∠B=30°,BC=EF,点D在AB边上,BD=DF,∠DCA=60°.
(1)求证:点D是线段AB的中点;
(2)求∠EDF的度数;
(3)将△DEF绕着点D旋转,DE,DF分别交线段BC于点M,N,当∠CDF=45°时,试探索线段BM,MN与CN的数量关系.发布:2025/6/10 1:0:1组卷:347引用:4难度:0.1 -
2.在Rt△ABC中,∠C=90°,令∠B=α<30°,线段BC的垂直平分线分别交线段AB、BC于点D,E.
(1)如图1,用等式表示DE和AC之间的数量关系,并证明.
(2)如图2,将射线AC绕点A逆时针旋转2α交线段DE于点F,
①依题意补全图形;
②用等式表示AF,EF,DE之间的数量关系,并证明.发布:2025/6/10 2:0:5组卷:164引用:1难度:0.3 -
3.已知,△ABC和△DEC都是等腰直角三角形,C为它们公共的直角顶点,如图1,D,E分别在BC,AC边上,F是BE的中点,连接CF.
(1)求证:△ACD≌△BCE.
(2)请猜想AD与CF的数量关系和位置关系,并说明理由.
(3)如图2,将△ABC固定不动,△DEC由图1位置绕点C逆时针旋转,旋转角∠BCD=α,(0°<a<90°),旋转过程中,其他条件不变.试判断,AD与CF的关系是否发生改变?若不变,请说明理由;若改变,请求出相关正确结论.发布:2025/6/10 2:30:2组卷:225引用:2难度:0.4