(1)【发现证明】
问题:如图1,在正方形ABCD中,点E、F分别是BC、CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.
观察:EF、DF、BE三条线段都不在同一条直线上,能不能借助图形的运动,将部分线段放置在一条直线上加以证明呢?
思路:将△ABE绕点A顺时针旋转90°使AB与AD重合,得到了旋转后的△ADG.
①根据上述思路在图1中画图分析并证明(写出详细的证明过程).
②若正方形ABCD的边长为6,当动点E在BC边上运动到中点位置时,动点F在CD边上距离D点多长的位置?(写出详细的解答过程)
(2)【类比迁移】
若点E、F分别为正方形两条边的延长线上的动点,EF、BE、DF三者之间还存在(1)中的关系吗?根据解决(1)中问题的经验加以探究.
①如图2,在正方形ABCD中,点E、F分别是CB、DC延长线上的动点,且∠EAF=45°,EF、BE、DF之间的数量关系是什么?请借助图2加以分析,并写出详细的证明过程.
②如图3,在正方形ABCD中,点E、F分别是BC、CD延长线上的动点,且∠EAF=45°,则EF、BE、DF之间的数量关系是 BE=EF+DFBE=EF+DF(直接写出关系式,无需证明).
【考点】四边形综合题.
【答案】BE=EF+DF
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/3 8:0:9组卷:451引用:2难度:0.3
相似题
-
1.已知△ABC是等边三角形,四边形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如图①,当AD与边BC相交,点D与点F在直线AC的两侧时,BD与CF的数量关系为
(2)将图①中的菱形ADEF绕点A旋转α(0°<α<180°),如图②.
Ⅰ.判断(1)中的结论是否仍然成立,请利用图②证明你的结论.
Ⅱ.若AC=4,AD=6,当△ACE为直角三角形时,直接写出CE的长度.发布:2025/6/25 7:30:2组卷:365引用:4难度:0.1 -
2.探究问题:
(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
证明:延长CB到G,使BG=DE,连接AG,
∵四边形ABCD为正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四边形ABCD为正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
变化:在图①中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系 ;
(2)方法迁移:
如图②,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想DF,BE,EF之间有何数量关系,并证明你的猜想.试猜想AM与AB之间的数量关系,并证明你的猜想.12
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).猜想:∠B与∠D满足关系:.12发布:2025/6/24 19:0:1组卷:879引用:1难度:0.1 -
3.如图,四边形ABCD是正方形,E是正方形ABCD内一点,F是正方形ABCD外一点,连接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,试判断△ECF的形状,并说明理由.
(2)在(1)的条件下,当BE:CE=1:2,∠BEC=135°时,求BE:BF的值.
(3)在(2)的条件下,若正方形ABCD的边长为(3+3)cm,∠EDC=30°,求△BCF的面积.7发布:2025/6/24 17:30:1组卷:59引用:1难度:0.5