试卷征集
加入会员
操作视频

在平面直角坐标系xOy中,图形W上任意两点间的距离若有最大值,将这个最大值记为d.对于点P和图形W给出如下定义:点Q是图形W上任意一点,若P,Q两点间的距离有最小值,且最小值恰好为d,则称点P为图形W的“关联点”.(1)如图1,图形W是矩形AOBC,其中点A的坐标为(0,3),点C的坐标为(4,3),则d=
5
5
,在点P1(-1,0),P2(2,8),P3(3,1),
P
4
-
21
,-
2
中,矩形AOBC的“关联点”是
P2,P4
P2,P4

(2)如图2,图形W是中心在原点的正方形DEFG,其中D点的坐标为(1,1).若直线y=x+b上存在点P,使点P为正方形DEFG的“关联点”.求b的取值范围;
(3)已知点
M
1
0
N
0
3
,图形W是以T(t,0)为圆心,1为半径的⊙T.若线段MN上存在点P,使点P为⊙T的“关联点“,直接写出t的取值范围.

【考点】圆的综合题
【答案】5;P2,P4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/8 5:0:8组卷:255引用:3难度:0.2
相似题
  • 1.如图1,以点O为圆心,半径为4的圆交x轴于A,B两点,交y轴于C,D两点,点P为劣弧AC上的一动点,延长CP交x轴于点E;连接PB,交OC于点F.
    (1)若点F为OC的中点,求PB的长;
    (2)求CP•CE的值;
    (3)如图2,过点O作OH∥AP交PD于点H,当点P在弧AC上运动时,连接AC,PC.试问△APC与△OHD相似吗?说明理由;
    AP
    DH
    的值是否保持不变?若不变,试证明,求出它的值;若发生变化,请说明理由.

    发布:2025/6/24 18:30:1组卷:272引用:1难度:0.5
  • 2.下面是“用三角板画圆的切线”的画图过程.
    如图1,已知圆上一点A,画过A点的圆的切线.画法:
    (1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
    (2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.则直线AD就是过点A的圆的切线.
    请回答:①这种画法是否正确
    (是或否);
    ②你判断的依据是:

    发布:2025/6/25 8:0:1组卷:19引用:1难度:0.4
  • 3.如图,已知⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标是(1,-1),半径为
    5

    (1)比较线段AB与CD的大小;
    (2)求A、B、C、D四点的坐标;
    (3)过点D作⊙O′的切线,试求这条切线的解析式.

    发布:2025/6/24 20:0:2组卷:43引用:1难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正