已知,点A的坐标是(8,0),点B的坐标是(0,6),点C与点A关于y轴的对称点,动点P,Q分别在线段BC,AC上(点P与点B,C不重合),且满足∠BQP=∠BCA.

(1)点C的坐标为 (-8,0)(-8,0)上,线段AB的长度=1010.
(2)如图1,当△BPQ为等腰三角形时,求点Q的坐标.
(3)如图2,做点B关于PQ的对称点B',当点B'落在△ABC的边上时,点B'的坐标为 (-5.76,1.68)或(-4.5,1.75)(-5.76,1.68)或(-4.5,1.75).(直接写出答案)
【考点】几何变换综合题.
【答案】(-8,0);10;(-5.76,1.68)或(-4.5,1.75)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/27 4:0:8组卷:14引用:2难度:0.2
相似题
-
1.如图,Rt△A′BC′≌Rt△ABC,∠ACB=∠A′C′B=90°,△A′BC′绕点B顺时针方向旋转,AA′,CC′相交于点E.
(1)当∠CBC′=90°时,线段AE与A′E的数量关系是:;
(2)当∠CBC′≠90°时,(1)的结论是否成立?若成立,请结合图2说明理由;
(3)若BC=5,AC=3,当AC′∥BC时,请直接写出CC′的长.发布:2025/5/24 17:0:2组卷:48引用:1难度:0.1 -
2.观察猜想
(1)如图1,在等边△ABC与等边△ADE中,△ADE绕点A顺时针旋转α度(0<α<360),则线段BD与线段CE的数量关系是 ,直线BD与直线CE相交所成较小角的度数是 ;
类比探究
(2)如图2,在△ABC与△ADE中,∠BCA=∠DEA=90°,CB=CA,ED=EA,其他条件不变,(1)中的两个结论是否成立?若成立,请说明理由;若不成立,请写出新的结论并证明;
拓展应用
(3)如图3,在△ABC与△ADE中,∠ABC=∠ADE=90°,∠BAC=∠DAE=60°,AB=3AD=3,当B,D,E三点共线时,直接写出CE的值.3发布:2025/5/24 20:0:2组卷:208引用:1难度:0.1 -
3.如图1,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.
(1)求证:BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.
①如图2,当点F落在AC上时(F不与C重合),若CF=1,tanC=3,求AE的长;
②如图3,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的数量关系,并说明理由.发布:2025/5/24 20:30:2组卷:60引用:1难度:0.1