试卷征集
加入会员
操作视频

我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数.
根据以上规律,解答下列问题:
(1)(a+b)4展开式共有
5
5
项,第二项系数为
4
4
;系数和为
16
16

(2)根据上面的规律,写出(a+b)5的展开式:
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

(3)利用上面的规律计算:35-5×34+10×33-10×32+5×3-1;
(4)此外,“杨辉三角”还蕴含着很多数字规律,请你找一找,根据规律写出二项式(a+b)n(n>3)的展开式中a2bn-2项的系数:
1
2
n2-
1
2
n
1
2
n2-
1
2
n

【答案】5;4;16;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
1
2
n2-
1
2
n
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:381引用:4难度:0.5
相似题
  • 1.(1)计算:(-2)3+
    4
    -tan45°+|-2021|;
    (2)化简:(a-1)2+a(4-a).

    发布:2024/12/26 8:0:1组卷:20引用:1难度:0.5
  • 2.已知:x+y=3,xy=-1,求下列各式的值:
    (1)x2+y2
    (2)(x-y)2

    发布:2024/12/23 18:0:1组卷:1959引用:8难度:0.6
  • 3.观察下列各式及其展开式
    (a+b)2=a2+2ab+b2
    (a+b)3=a3+3a2b+3ab2+b3
    (a+b)4=a4+4a3b+6a2b2+4ab3+b4
    (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

    请你猜想(a+b)11的展开式从左往右第三项的系数是(  )

    发布:2024/12/23 14:30:1组卷:146引用:4难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正