试卷征集
加入会员
操作视频

已知抛物线l1:y=x2+2mx+3(m≠0).
(1)下列有关抛物线l1的结论正确的有
③④
③④
(填序号).
①开口向下;
②对称轴在y轴的左侧;
③与y轴的交点坐标为(0,3);
④函数值y有最小值3-m2
(2)当m=1时,抛物线l1的顶点坐标为
(-1,2)
(-1,2)
,将抛物线l1沿直线x=m翻折得到抛物线l2,则抛物线l2的表达式为
y=x2-6x+11
y=x2-6x+11

(3)如图,设抛物线l1与y轴相交于点C,将抛物线l1沿直线x=m翻折,得到抛物线l2,抛物线l1,l2的交点为A,抛物线l2的顶点为P.是否存在实数m,使得∠PCA=90°?若存在,请求出m的值;若不存在,请说明理由.

【考点】二次函数综合题
【答案】③④;(-1,2);y=x2-6x+11
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/28 8:0:9组卷:419引用:4难度:0.5
相似题
  • 1.如图,抛物线y=
    1
    4
    (x+2)(x-8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是(  )

    发布:2025/6/17 18:30:1组卷:2558引用:19难度:0.7
  • 2.如图,抛物线y=ax2-3ax+b与直线AB交于A(-2,
    3
    2
    )、B(4,0)两点,点C是此抛物线上的一个动点,过点C作CD⊥x轴,交直线AB于点D.
    (1)求此抛物线的解析式;
    (2)如图①,当点C在直线AB下方的抛物线上运动时,请求出线段CD长度的最大值;
    (3)如图②,以D为圆心,CD的长为半径作⊙D.当⊙D与x轴相切时,请直接写出点C的横坐标.

    发布:2025/6/17 22:30:1组卷:63引用:1难度:0.2
  • 3.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.
    (1)求抛物线的解析式;
    (2)当点P在直线OA上方时,求线段PC的最大值;
    (3)过点A作AD⊥x轴于点D,在抛物线上是否存在点P,使得以P、A、C、D四点为顶点的四边形是平行四边形?若存在,求m的值;若不存在,请说明理由.

    发布:2025/6/17 18:0:1组卷:2088引用:13难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正