已知射线AB⊥射线AC于点A,点D,F分别在射线AB,AC上,过点D,F作射线DE,FG,使∠BDE+∠AFG=90°,如图1所示.
(1)试判断直线DE与直线FG的位置关系,并说明理由.
(2)如图2,已知∠ADE的角平分线与∠AFG的角平分线相交于点P. ①当∠BDE=60°时,则∠DPF=135°135°;
②当∠BDE=α(α≠60°)时,∠DPF的大小是否保持不变?若不变,请说明理由;若改变,请求出∠DPF的度数.
(3)当∠BDE沿射线AB平移且∠BDE=α时,请直接写出∠ADE的角平分线与∠AFG的角平分线所在直线相交形成的∠DPF的度数.

【考点】平移的性质.
【答案】135°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/29 8:0:10组卷:764引用:5难度:0.4
相似题
-
1.如图,在△ABC中,已知∠ABC=90°,AB=BC=9cm现将△ABC沿所在的直线向右平移4cm得到△A′B′C′,BC于A′C′相交于点D,若CD=4cm,则阴影部分的面积为
发布:2025/6/20 4:0:1组卷:119引用:3难度:0.7 -
2.如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是.
发布:2025/6/20 7:30:1组卷:553引用:6难度:0.5 -
3.如图,在△ABC中,BC=4,若将△ABC平移6个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,则PQ的最大值是.
发布:2025/6/20 8:0:2组卷:326引用:2难度:0.7