试卷征集
加入会员
操作视频

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m.
①用含m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,平移后的抛物线上是否存在点Q,使S△QMA=2S△PMA,若存在,请求出点Q的坐标;若不存在,请说明理由.

【考点】二次函数综合题
【答案】(1)y=2x;
(2)①P(2,m2-2m+4);
②m=1;
(3)点Q(2+
3
,6+2
3
)或(2-
3
,6-2
3
).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/25 8:0:9组卷:1491引用:2难度:0.5
相似题
  • 1.已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
    (1)求抛物线的解析式;
    (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
    (3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

    发布:2025/6/13 5:30:2组卷:4390引用:34难度:0.1
  • 2.如图,抛物线y=-(x-1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,作CD∥x轴,交抛物线于另一点D,连结AC,BC.
    (1)点A的坐标为
    .点B的坐标为

    (2)动点E从点B出发,以1个单位/秒的速度沿线段BC向终点C运动,设运动时间为t秒,则当以C,D,E为顶点的三角形与△ACB相似时,求t的值.

    发布:2025/6/13 1:0:1组卷:333引用:1难度:0.2
  • 3.在平面直角坐标系xOy中,抛物线y=ax2+bx-5恰好经过A(2,-9),B(4,-5),C(4,-13)三点中的两点.
    (1)求该抛物线表达式;
    (2)在给出的平面直角坐标系中画出这个抛物线;
    (3)如果直线y=k与该抛物线有交点,那么k的取值范围是

    发布:2025/6/13 0:30:2组卷:60引用:4难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正