如图,在四边形ABCD中,AD∥BC,∠A=90°,BD=DC,AB=6,AD=8,点P、Q分别为BC、AD上的动点,连接PQ,与BD相交于点O,
(1)当∠1=∠2时,求证:∠DOQ=∠DPC;
(2)在(1)的条件下,求证:DQ•PC=BD•DO;
(3)如果点P由点B向点C移动,每秒移动2个单位,同时点Q由点D向点A移动,每秒移动1个单位,设移动的时间为t秒,是否存在某以时刻,使得△BOP为直角三角形?如果存在,请求出t的值;如果不存在,请说明理由.
【考点】相似形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/14 5:0:10组卷:625引用:4难度:0.1
相似题
-
1.已知:如图,正方形ABCD与正方形AEFG.
(1)如图①,求证:BG=DE;
(2)如图②,求的值;CFBG
(3)如图③,分别取CF、BE的中点M、N,试探究:MN与BE的关系,并说明理由.发布:2025/6/9 16:30:1组卷:218引用:3难度:0.2 -
2.【初步探究】
(1)把矩形纸片ABCD如图①折叠,当点B的对应点B'在MN的中点时,填空:△EB'M △B'AN(“≌”或“∽”).
【类比探究】
(2)如图②,当点B的对应点B'为MN上的任意一点时,请判断(1)中结论是否成立?如果成立,请写出证明过程;如果不成立,请说明理由.
【问题解决】
(3)在矩形ABCD中,AB=4,BC=6,点E为BC中点,点P为线段AB上一个动点,连接EP,将△BPE沿PE折叠得到△B'PE,连接DE,DB',当△EB'D为直角三角形时,BP的长为 .发布:2025/6/9 14:30:1组卷:832引用:9难度:0.2 -
3.已知AD是△ABC的中线,点E是线段AD上一点,过点E作AC的平行线,过点B作AD的平行线,两平行线交于点F,连结AF.
【方法感知】如图①,当点E与点D重合时,易证:△AEC≌△FBE.(不需证明)
【探究应用】如图②,当点E与点D不重合时,求证:四边形ACEF是平行四边形.
【拓展延伸】如图③,记AB与EF的交点为G,CE的延长线与AB的交点为N,且N为AB的中点.
(1)=;NGGA
(2)若CA⊥AB,BC=5时,则BF的长为 .发布:2025/6/9 22:30:2组卷:252引用:5难度:0.3