试卷征集
加入会员
操作视频

对于平面直角坐标系中的任意两点P,Q,若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为“和合点”,如图1中的P,Q两点即为“和合点”.
(1)已知点A(-4,8),B(6,0),C(6,6),D(-2,9).
①在上面四点中,与点E(-5,-7)为“和合点”的是
A,C
A,C

②若点F(-3,0),过点F作直线l⊥x轴,点G在直线l上,A,G两点为“和合点”,则点G的坐标为
(-3,9)或(-3,-9)
(-3,9)或(-3,-9)

③若点M(2a,3b)在第二象限,点N(-3a,-b)在第四象限,且A,M两点为“和合点”,D,N两点为“和合点”,求a,b的值;
(2)如图2,已知点H(-5,0),K(0,5),点R(x,y)是线段HK上的一动点,且满足x-y=-5,过点T(n,0)作直线m⊥x轴,若在直线m上存在点S,使得R,S两点为“和合点”,直接写出n的取值范围.

【考点】三角形综合题
【答案】A,C;(-3,9)或(-3,-9)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/29 8:0:10组卷:101引用:2难度:0.5
相似题
  • 1.如图,在△ABC中,∠BAC=90°,以AB为一边向外作正方形ABDE,点F为直线BC上的一点,连接DF,作FG⊥DF交直线AB于点G.
    (1)如图1,若AB=AC,点F在线段BC上,请直接写出线段DF与FG的数量关系;
    (2)如图2,若AB=
    3
    AC,点F在线段BC上,试探究线段BD,BF,BG三者之间的数量关系,并证明你的结论;
    (3)若AB=
    3
    AC,AB=3,DF=2
    2
    ,请直接写出AG的长.

    发布:2025/5/25 8:30:2组卷:125引用:1难度:0.2
  • 2.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,连接DB.
    (1)证明:△EAC≌△DBC;
    (2)当点A在线段ED上运动时,猜想AE、AD和AC之间的关系,并证明.
    (3)在A的运动过程中,当
    AE
    =
    2
    AD
    =
    6
    时,求△ACM的面积.

    发布:2025/5/25 8:30:2组卷:376引用:5难度:0.1
  • 3.【阅读理解】
    截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.
    (1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
    解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.
    根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是

    【拓展延伸】
    (2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;
    【知识应用】
    (3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长为
    cm.

    发布:2025/5/25 9:0:1组卷:427引用:6难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正