问题情境:“综合与实践”课上,杨老师提出如下问题:将图1中的正方形纸片沿对角线剪开,得到两个全等的等腰直角三角形纸片,表示为△ABC和△DEF,其中∠ACB=∠DEF=90°,将△ABC和△DEF按图2所示方式摆放(点C,B,E三点共线),其中点B与点D重合(标记为点B).连接AF,取AF的中点M,过点F作NF∥AC交CM的延长线于点N.
问题(1):试判断△CEN的形状,直接写出答案.
(2)深入探究:杨老师将图2中的△BEF绕点B顺时针方向旋转,当点C,B,E三点不在一条直线上时,如图3所示,并让同学们提出新的问题并解决新问题.
①“洞察小组”提出问题是(1)中的结论是否仍然成立?若成立,请你证明,若不成立;请你写出新的结论,并证明;
②“思考小组”提出问题是:若正方形的边长是4,把图2中的△BEF绕点B顺时针方向旋转一周,当点C,B,F三点共线时,请你直接写出△CEN的面积.
【考点】四边形综合题.
【答案】(1)△CEN是等腰直角三角形.证明见解答;
(2)①(1)中的结论仍然成立,即△CEN是等腰直角三角形.证明见解答;
②16+8或16-8.
(2)①(1)中的结论仍然成立,即△CEN是等腰直角三角形.证明见解答;
②16+8
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/28 7:0:2组卷:924引用:2难度:0.4
相似题
-
1.如图,在菱形ABCD中,AB=10,sinB=
,点E从点B出发沿折线B-C-D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.35
(1)如图1,点G在AC上.求证:FA=FG.
(2)若EF=FG,当EF过AC中点时,求AG的长.
(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?发布:2025/1/28 8:0:2组卷:2056引用:3难度:0.1 -
2.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.发布:2025/1/28 8:0:2组卷:577引用:1难度:0.2 -
3.如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=
,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.55
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.发布:2025/1/28 8:0:2组卷:255引用:1难度:0.1