问题情境:已知,如图,在梯形ABED中,AD⊥直线l,BE⊥直线l,垂足分别为D,E,点C在直线l上,CD=BE,∠ACB=90°.

猜想证明:(1)如图①,试判断△ABC的形状,并说明理由;
解决问题:(2)如图①,若DE=8,求梯形ADEB的面积;
拓展提升:(3)如图②,设梯形ADEB的周长为m,AB边中点O处有两个动点P,Q同时出发,沿着O→A→D→E→B→O的方向移动,点Q的速度是点P速度的3倍,当点P第一次到达点B时,两点同时停止移动.
①两点同时停止移动时,点Q移动的路程与点P移动的路程之差 <<2m.(填“>”“<”或“=”)
②移动过程中点P能否和点Q相遇?如果能,则用直线a连接相遇点和点O,并探索直线a与AB的位置关系,写出推理过程;如不能,说明理由.
【考点】四边形综合题.
【答案】<
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/8 20:0:9组卷:54引用:3难度:0.1
相似题
-
1.已知:在▱ABCD中,∠BAD=45°,AB=BD,E为BC上一点,连接AE交BD于F,过点D作DG⊥AE于G,延长DG交BC于H
(1)如图1,若点E与点C重合,且AF=,求AD的长;5
(2)如图2,连接FH,求证:∠AFB=∠HFB;
(3)如图3,连接AH交BF于M,当M为BF的中点时,请直接写出AF与FH的数量关系.发布:2025/6/20 10:30:1组卷:532引用:2难度:0.3 -
2.如图,四边形ABCD是正方形,E是线段BC上一点,连接AE,将AE绕点E顺时针旋转90°,得到EF,过点F作FG⊥CD于点G.
(1)如图①,当E是BC的中点时,请直接写出线段FG和BE的数量关系;
(2)如图②,当E不是BC的中点时,(1)中的结论是否成立?请说明理由;
(3)若BC=4,CE=2,EF与CD交于点P,请求出CP的长.发布:2025/6/20 12:0:2组卷:32引用:1难度:0.1 -
3.如图1,正方形ABCD,E为平面内一点,且∠BEC=90°,把△BCE绕点B逆时针旋转90°得△BAG,直线AG和直线CE交于点F.
(1)证明:四边形BEFG是正方形;
(2)若∠AGD=135°,猜测CE和CF的数量关系,并说明理由;
(3)如图2,连接DF,若AB=13,CF=17,求DF的长.发布:2025/6/20 10:30:1组卷:97引用:1难度:0.1