如图,点P是等边三角形ABC中AC边上的动点(0°<∠ABP<30°),作△BCP的外接圆交AB于点D.点E是圆上一点,且ˆPD=ˆPE,连接DE交BP于点F.
(1)求证:BE=BC;
(2)当点P运动变化时,∠BFD的度数是否发生变化?若变化,请说明理由;若不变,求∠BFD的度数.
(3)探究线段BF、CE、EF之间的数量关系,并证明.
ˆ
PD
=
ˆ
PE
【考点】圆的综合题.
【答案】(1)见解答过程;
(2)∠BFD=60°;
(3)见解答过程.
(2)∠BFD=60°;
(3)见解答过程.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/15 2:0:1组卷:417引用:5难度:0.3
相似题
-
1.已知,在Rt△ABC中,∠A=90°,AB=3,AC=4,⊙A与⊙B外切于点D,并分别与BC、AC边交于点E、F.
(1)设EC=x,FC=y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)若以E、F、C为顶点的三角形与△ABC相似,求的值;ADBD
(3)若⊙C与⊙A、⊙B都相切,求的值.ADBD发布:2025/6/17 21:0:1组卷:22引用:1难度:0.3 -
2.如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的⊙O交边CD于点E,连接OE,过点E作⊙O的切线交边BC于点F.
(1)求证:△ODE∽△ECF;
(2)设DE=x,求OA的长(用含x的代数式表示);
(3)在点O运动的过程中,设△CEF的周长为p,试用含x的代数式表示p,你能发现怎样的结论?发布:2025/6/17 21:30:1组卷:37引用:1难度:0.4 -
3.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE.
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH,
①△CBH∽△OBC;
②求OH+HC的最大值.发布:2025/6/18 6:30:1组卷:2832引用:7难度:0.1