在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.
如图,在矩形ABCD中,AB=6,BC=10.

(1)如图①,将矩形ABCD折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上.当折痕的另一端点F在边AB上,且AF=2时,∠BGE的度数为 60°60°;
(2)如图②,将矩形ABCD折叠,使顶点A落在边BC上的点G处,折痕的一端点E在边AD上,另一端点为矩形ABCD的顶点B.将△ABE折叠后重新展开,连接BE,EC,过点E作EF⊥EC交线段AB于点F,连接CF,与BE交于点P.求PE长;
(3)如图③,将△EDH沿直线EH折叠,连接EC,折叠后点D落在EC边上的点D′处,点H在边CD上,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=2.求△MD′H的面积.
【考点】四边形综合题.
【答案】60°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/2 8:0:9组卷:301引用:1难度:0.3
相似题
-
1.如图1,在直线l上找一点C,使AC+BC最短,并在图中标出点C.
【简单应用】
(1)如图2,在等边△ABC中,AB=10,AD⊥BC,E是AC的中点,M是AD上的一点,求EM+MC
的最小值,借助上面的模型,由等边三角形的轴对称性可知,B与C关于直线AD对称,连接BM,
EM+MC的最小值就是线段 的长度,则EM+MC的最小值是 ;
(2)如图3,在四边形ABCD中,∠BAD=140°,∠B=∠D=90°,在BC,CD上分别找一点M、N,
当△AMN周长最小时,∠AMN+∠ANM=°.
【拓展应用】
如图4,是一个港湾,港湾两岸有A、B两个码头,∠AOB=30°,OA=1千米,OB=2千米,现有一艘货船从码头A出发,根据计划,货船应先停靠OB岸C处装货,再停靠OA岸D处装货,最后到达码头B.怎样安排两岸的装货地点,使货船行驶的水路最短?请画出最短路线并求出最短路程.发布:2025/6/14 2:0:1组卷:166引用:1难度:0.1 -
2.天府新区某校数学活动小组在一次活动中,对一个数学问题作如下探究:
(1)问题发现:如图1,在等边△ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ.求证:BP=CQ;
(2)变式探究:如图2,在等腰△ABC中,AB=BC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP=PQ,∠APQ=∠ABC,连接CQ.判断∠ABC和∠ACQ的数量关系,并说明理由;
(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为6,CQ=2,求正方形ADBC的边长.2发布:2025/6/13 22:0:1组卷:2504引用:13难度:0.2 -
3.如图,将平行四边形DBEC沿BD折叠,点C恰好落在EB的延长线上点A处,连接AC,BD交于点O,AC=6,BD=8.若直线AE上有一点F,当△FCE为等腰三角形时,线段AF的长为 .
发布:2025/6/14 1:30:1组卷:199引用:1难度:0.1