一数学兴趣小组为了测量校园内灯柱AB的高度,设计了以下三个方案:
方案一:在操场上点C处放一面平面镜,从点C处后退1m到点D处,恰好在平面镜中看到灯柱的顶部A点的像;再将平面镜向后移动4m(即FC=4m)放在F处.从点F处向后退1.5m到点H处,恰好再次在平面镜中看到灯柱的顶部A点的像,测得的眼睛距地面的高度ED、GH为1.5m、已知点B,C,D,F,H在同一水平线上,且GH⊥FH,ED⊥CD,AB⊥BH.(平面镜的大小忽略不计)
方案二:利用标杆CD测量灯柱的高度.已知标杆CD高1.5m,测得DE=2m,CE=2.5m.
方案三:利用三角板的边CE保持水平,并且边CE与点M在同一直线上.已知两条边CE=0.4m,EF=0.2m,测得边CE离地面距离DC=1.5m.
三种方案中,方案 二、三二、三不可行,请选择可行的方案求出灯柱的高度.

【答案】二、三
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/1 8:0:9组卷:95引用:1难度:0.5
相似题
-
1.如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一颗盛开着桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=3米,CD=11.5米,∠CDE=120°,已知小华的身高AB为2米,请你利用以上的数据求出DE的长度.(结果保留根号)
发布:2024/12/23 19:0:2组卷:1092引用:11难度:0.5 -
2.西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边按图2放置,从“矩”CDA的一端A(人眼)望点E,使视线通过“矩”的另一端点C,记人站立的位置为点B,量出BG长,即可算得物高EG.若a=30cm,b=60cm,AB=1.6m,BG=2.4m,则EG的高度为( )
发布:2025/1/1 23:0:3组卷:80引用:5难度:0.5 -
3.如图,在小孔成像问题中,小孔O到物体AB的距离是60cm,小孔O到像CD的距离是30cm,若物体AB的长为16cm,则像CD的长是 cm.
发布:2024/12/23 11:0:1组卷:714引用:7难度:0.5