数学实践活动课上,研究小组探究如下问题:
【问题情境】如图,点A,O,B在同一条直线上,将一直角三角尺如图1放置,使直角顶点与点O重合,其中∠COD=90°,∠C=30°,OE平分∠BOC且交CD所在直线于点F.
【独立思考】(1)若∠AOC=30°,求∠OFC的度数;
【实践操作】(2)如图2,将直角三角尺绕点O旋转,当∠OFC=2∠AOC时,求∠AOC的度数;
【深入探究】(3)继续旋转直角三角尺,若OC不与AB重合,试探究旋转过程中,∠AOC和∠OFC之间的数量关系.

【考点】三角形综合题.
【答案】(1)75°;
(2)40°;
(3)∠AOC=2∠OFC-120°或∠AOC=2∠OFC+120°.
(2)40°;
(3)∠AOC=2∠OFC-120°或∠AOC=2∠OFC+120°.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/5 8:0:9组卷:111引用:3难度:0.5
相似题
-
1.如图,△ABC中,CA=CB、∠ACB=α,过点B作直线l∥AC,D为线段AB上一动点,连接CD,将射线DC绕点D顺时针旋转α,交直线l于点E.
(1)如图1,当α=90°时,线段CD和ED的数量关系是 .
(2)如图2,当0°<α<180°时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形给出证明;若不成立,请说明理由.
(3)若α=120°,AC=,当△DEB为直角三角形时,请直接写出线段DE的长.3发布:2025/5/24 1:30:2组卷:55引用:1难度:0.1 -
2.综合与实践
问题情境:数学活动课上,王老师出示了一个问题:如图1,在△ABC中,点D在AC边上,AE⊥BD于F交BC于E,∠ABD=2∠CAE.求证AB=BD.
独立思考:(1)请解答王师提出的问题.
实践探究:(2)在原有问题条件不变的情况下,王老师增加下面条件,并提出新问题,请你解答.“如图2,作EG⊥AC于点G,若AE=BD,探究线段AD与CE之间的数量关系,并证明.”
问题解析:(3)数学活动小组同学对上述问题进行特殊化研究之后发现,当点G与点D重合时,连接CF,若给出DE的值,则可求出CF的值.该小组提出下面的问题,请你解答.”
如图3,在(2)的条件下,当点D与点G重合时,连接CF,若DE=,求CF的长”.5发布:2025/5/24 4:30:1组卷:884引用:1难度:0.2 -
3.如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AB=9cm,动点P从点A开始以2cm/s的速度向点C运动,动点F从点B开始以1cm/s的速度向点A运动,两点同时运动,同时停止,运动时间为t(s).
(1)当t为何值时,△PAF是等边三角形?
(2)当t为何值时,△PAF是直角三角形?
(3)过点P作PD⊥BC于点D,连接DF.
①求证:四边形AFDP是平行四边形;
②当t为何值时,△PDC的面积是△ABC面积的一半.发布:2025/5/24 1:0:1组卷:283引用:3难度:0.3