试卷征集
加入会员
操作视频

如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.
(1)求证:△BEF是直角三角形;
(2)求证:△BEF∽△BCA;
(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.

【考点】圆的综合题
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/1 8:0:9组卷:2022引用:8难度:0.1
相似题
  • 1.如图①,已知⊙O是△ABC的外接圆,∠ABC=∠ACB=α(45°<α<90°,D为
    ˆ
    AB
    上一点,连接CD交AB于点E.
    (1)连接BD,若∠CDB=40°,求α的大小;
    (2)如图②,若点B恰好是
    ˆ
    CD
    中点,求证:CE2=BE•BA;
    (3)如图③,将CD分别沿BC、AC翻折得到CM、CN,连接MN,若CD为直径,请问
    AB
    MN
    是否为定值,如果是,请求出这个值,如果不是,请说明理由.

    发布:2025/5/23 23:30:1组卷:1566引用:4难度:0.3
  • 2.如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l,过点B作BD⊥l,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.
    (1)求证:△CDE≌△EFC;
    (2)若AB=4,连接AC.
    ①当AC=
     
    时,四边形OBEC为菱形;
    ②当AC=
     
    时,四边形EDCF为正方形.

    发布:2025/5/23 23:30:1组卷:963引用:8难度:0.5
  • 3.【阅读理解】三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.
    如图1,△ABC中,点D是AB边上一点,连接CD,若CD2=AD•BD,则称点D是△ABC中AB边上的“好点”.
    【探究应用】
    (1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;
    (2)如图3,△ABC中,AB=14,cosA=
    2
    2
    ,tanB=
    3
    4
    ,若点D是AB边上的“好点”,求线段AD的长;
    (3)如图4,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D,若点H是△ACD中CD边上的“好点”.
    ①求证:AH=BH;
    ②若BC⊥CH,⊙O的半径为r,且r=
    3
    2
    AD,求
    DH
    CH
    的值.

    发布:2025/5/23 23:0:1组卷:1365引用:5难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正