疫情以来,越来越多的厂家转型为电商.某工厂在网上接到一批产品生产订单,按要求在15天内完成,约定这批产品的出厂价为每件20元,设第x天(1≤x≤15,x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:
天数(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 6.5 | 7.5 | 9 | 11 |
y
=
2 x + 20 ( 1 ≤ x < 10 , x 为整数 ) |
40 ( 10 ≤ x ≤ 15 , x 为整数 ) |
(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;
(2)求李师傅第几天创造的利润最大?最大利润是多少元?
(3)任务完成后,统计发现平均每个工人每天创造的利润为297元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金,请计算李师傅共可获得多少元奖金?
【答案】(1)p与x的函数关系式为:p=0.5x+6(1≤x≤15);W与x之间的函数关系式为:W=
;
(2)第9天创造的利润最大,最大利润是361元;
(3)李师傅共可获得240元奖金.
- x 2 + 18 x + 280 | 1 ≤ x < 10 |
- 20 x + 560 | 10 ≤ x ≤ 15 |
(2)第9天创造的利润最大,最大利润是361元;
(3)李师傅共可获得240元奖金.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/6 8:0:9组卷:66引用:1难度:0.5
相似题
-
1.张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x为何值时,S有最大值并求出最大值.
(参考公式:二次函数y=ax2+bx+c(a≠0),当x=-时,y最大(小)值=b2a)4ac-b24a发布:2025/6/24 19:0:1组卷:251引用:25难度:0.5 -
2.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.
(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?发布:2025/6/25 6:30:1组卷:6484引用:40难度:0.3 -
3.为迎接国庆节,某商店购进了一批成本为每件30元的纪念商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x的函数关系式;
(2)若商店按不低于成本价,且不高于60元的单价销售,则销售单价定为多少元,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?发布:2025/6/25 8:30:1组卷:926引用:7难度:0.7