为预防传染病,某校定期对教室进行“药熏消毒”.已知某种药物在燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;一次性燃烧完以后,y与x成反比例(如图所示).在药物燃烧阶段,实验测得在燃烧5分钟后,此时教室内每立方米空气含药量为72mg.
(1)若一次性燃烧完药物需10分钟.
①分别求出药物燃烧时及一次性燃烧完以后y关于x的函数表达式.
②当每立方米空气中的含药量低于75mg时,对人体方能无毒害作用,那么从消毒开始,在哪个时间段学生不能停留在教室里?
(2)已知室内每立方米空气中的含药量不低于0.7mg时,才能有效消毒,如果有效消毒时间要持续120分钟,问要一次性燃烧完这种药物需多长时间?
7
2
7
5
【考点】反比例函数的应用.
【答案】(1)①y=x(0≤x≤10);y=(x≥10);
②当2≤x≤50时,学生不能在教室停留;
(2)要一次性燃烧完这种药物需11分钟.
7
10
70
x
②当2≤x≤50时,学生不能在教室停留;
(2)要一次性燃烧完这种药物需11分钟.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/11 8:0:9组卷:909引用:1难度:0.5
相似题
-
1.喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?发布:2025/6/22 20:0:1组卷:1392引用:15难度:0.7 -
2.某物体质量一定,若体积V=40m3,则密度ρ=1.6kg/m3.
(1)写出此物体的密度ρ与体积V的函数关系式,并画出它的图象;
(2)当物体密度ρ=3.2kg/m3时,它的体积V是多少?
(3)若让该物体的体积控制在4m3~80m3之间,则该物体的密度是如何变化的?发布:2025/6/22 18:0:1组卷:40引用:4难度:0.7 -
3.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):
(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?发布:2025/6/22 18:0:1组卷:3498引用:19难度:0.3