已知,等边△ABC的边长等于6cm.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.
(1)如图,设点P的运动时间为t(s),那么t为何值时,△PBC是直角三角形;
(2)若另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.如果动点P、Q都以1cm/s的速度同时出发.
①设运动时间为t(s),那么t为何值时,△DCQ是等腰三角形?
②连接PC,猜想:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.
【考点】三角形综合题.
【答案】(1)t=3s;
(2)①t=2时,△DCQ是等腰三角形;②△PCD和△QCD的面积相等,理由见解析.
(2)①t=2时,△DCQ是等腰三角形;②△PCD和△QCD的面积相等,理由见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/4 2:0:9组卷:40引用:2难度:0.5
相似题
-
1.已知,如图,在平面直角坐标系中,A为y轴正半轴上一点,B为x轴负半轴上一点.
(1)若BP平分∠ABO,AP平分∠BAO的外角,求∠P.
(2)如图2,C为x轴正半轴上一点,BP平分∠ABC,且P在AC的垂直平分线上.若∠ABC=2∠ACB,求证:AP∥BC.
(3)在第(2)问的条件下,D是AB上一点,E是x轴正半轴上一点,连AE交DP于H.当∠DHE与∠ABE满足什么条件时,DP=AE,请说明理由.发布:2025/6/17 19:30:1组卷:75引用:1难度:0.3 -
2.把一副三角板按如图1摆放(点C与点E重合),点B,C(E),F在同一直线上.∠ACB=∠DFE=90°,∠A=30°,∠DEF=45°,BC=EF=8cm,点P是线段AB的中点.△DEF从图1的位置出发,以4cm/s的速度沿CB方向匀速运动,如图2,DE与AC相交于点Q,连接PQ.当点D运动到AC边上时,△DEF停止运动.设运动时间为t(s).
(1)当t=1时,求AQ的长;
(2)当t为何值时,点A在线段PQ的垂直平分线上?
(3)当t为何值时,△APQ是直角三角形?发布:2025/6/17 21:30:1组卷:286引用:3难度:0.1 -
3.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有( )
①CE=BD;
②△ADC是等腰直角三角形;
③∠ADB=∠AEB;
④S四边形BCDE=BD•CE;12
⑤BC2+DE2=BE2+CD2.发布:2025/6/18 15:30:1组卷:1902引用:10难度:0.7