学习了全等三角形后,我们知道中点在平行线之间的题目通常会用到倍长中线构造“8”字型全等的方法,比如在图1,已知AB∥CD,连结AD,BC交于点E,若E为AD中点,则有△ABE≌△DCE.请利用以上方法解决下列问题.
问题1:为测量河对岸A点到B点的距离,可借鉴上述方法求值:过点B画直线l,并在直线l上依次取C点和D点,使得AC⊥l,BC=BD,补全图形,指出测量哪条线段就可知道AB的长,请加以证明;
问题2:【深入思考】如图3,在△ABC中,D是AC的中点,BA=BE,BC=BF,∠ABE=∠CBF=90°,试判断线段BD与EF的数量关系并证明;
问题3:如图4,在Rt△ABC中,∠ACB=90°,D为AB中点,连接CD,作ED⊥CD交AC于点E.已知AE=2,BC=5,则CE的长 2929.
29
29
【考点】三角形综合题.
【答案】
29
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/12 2:0:2组卷:218引用:2难度:0.3
相似题
-
1.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF.
(1)如图1,求证:∠BED=∠AFD;
(2)如图1,求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=4,CF=3,求△DEF的面积.发布:2024/12/23 14:0:1组卷:216引用:3难度:0.2 -
2.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
(1)当∠AFD=°时,DF∥AC;当∠AFD=°时,DF⊥AB;
(2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求∠APD的度数;
(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.发布:2024/12/23 18:30:1组卷:1759引用:10难度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),动点P从点A出发,在线段AD上,以每秒1个单位的速度向点D运动:动点Q从点C出发,在线段BC上,以每秒2个单位的速度向点B运动,点P、Q同时出发,当其中一个点到达终点时,另一个点随之停止运动,设运动时间为t(秒).
(1)当t=秒时,PQ平分线段BD;
(2)当t=秒时,PQ⊥x轴;
(3)当时,求t的值.∠PQC=12∠D发布:2024/12/23 15:0:1组卷:186引用:3难度:0.1