试卷征集
加入会员
操作视频

中国剩余定理,此定理源于我国古代数学名著《孙子算经》,其中记载了这样一个“物不知数”的问题:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这个问题的意思是:有一个正整数,除以3余2,除以5余3,除以7余2,求符合条件的正整数.此问题及其解题原理在世界上颇负盛名,中外数学家们称之为“孙子定理”、“中国剩余定理”或“大衍求一术”等.对以上“物不知数”的问题,求得满足条件的最小正整数为
23
23
,而满足条件的所有正整数可用代数式表示为
105k+23(k为非负整数)
105k+23(k为非负整数)

【考点】带余除法
【答案】23;105k+23(k为非负整数)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 14:0:0组卷:91引用:1难度:0.9
相似题
  • 1.n为正整数,302被n(n+1)除所得商数q及余数r都是正值.则r的最大值与最小值的和是(  )

    发布:2025/5/29 6:30:1组卷:284引用:3难度:0.7
  • 2.有棋子若干,三个三个地数余1,五个五个地数余3,七个七个地数余5,则棋子至少有(  )

    发布:2025/5/29 6:30:1组卷:120引用:1难度:0.7
  • 3.任给一个自然数N,把N的各位数字按相反的顺序写出来,得到一个新的自然数N′,试证明:|N-N′|能被9整除.

    发布:2025/5/29 7:0:2组卷:37引用:1难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正