试卷征集
加入会员
操作视频

如图,在平面直角坐标系中,点A(0,a),B(b,0)满足
b
-
2
a
+
|
a
-
2
|
=
0

(1)直接写出结果:点A坐标为
(0,2)
(0,2)
,点B坐标为
(4,0)
(4,0)

(2)点C是线段AB上一点,满足∠AOC=∠CAO,点E是第四象限中一点,连接OE,使得∠BOE=∠BOC,点F是线段OB上一动点,连接AF交OC于点D,当点F在线段OB上运动时,
ODA
+
BAF
OFA
是否为定值?如果是,请求出该值;如果不是,请说明理由;
(3)已知坐标轴上有两动点P、Q同时出发,P点从A点出发以每秒1个单位长度的速度向下匀速移动,Q点从O点出发以每秒2个单位长度的速度向右匀速移动,点G(2,1)是线段AB上一点,设运动时间为t(t>0)秒,当S△OGQ=2S△OGP时,
①求此时t的值;
②此时是否存在点H(6,m),使得S△OGH=3S△OGQ,若存在,请直接写出H的坐标;若不存在,请说明理由.

【考点】三角形综合题
【答案】(0,2);(4,0)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/25 22:0:8组卷:86引用:3难度:0.3
相似题
  • 1.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF.

    (1)如图1,求证:∠BED=∠AFD;
    (2)如图1,求证:BE2+CF2=EF2
    (3)如图2,当∠ABC=45°,若BE=4,CF=3,求△DEF的面积.

    发布:2024/12/23 14:0:1组卷:216引用:3难度:0.2
  • 2.一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
    (1)当∠AFD=
    °时,DF∥AC;当∠AFD=
    °时,DF⊥AB;
    (2)在旋转过程中,DF与AB的交点记为P,如图2,若△AFP有两个内角相等,求∠APD的度数;
    (3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.

    发布:2024/12/23 18:30:1组卷:1753引用:10难度:0.1
  • 3.已知A(0,4),B(-4,0),D(9,4),C(12,0),动点P从点A出发,在线段AD上,以每秒1个单位的速度向点D运动:动点Q从点C出发,在线段BC上,以每秒2个单位的速度向点B运动,点P、Q同时出发,当其中一个点到达终点时,另一个点随之停止运动,设运动时间为t(秒).

    (1)当t=
    秒时,PQ平分线段BD;
    (2)当t=
    秒时,PQ⊥x轴;
    (3)当
    PQC
    =
    1
    2
    D
    时,求t的值.

    发布:2024/12/23 15:0:1组卷:184引用:3难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正