阅读并填空.将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM,PN恰好经过点B和点C.我们来探究:∠ABP与∠ACP是否存在某种数量关系.

(1)特例探索:若∠A=50°,则∠PBC+∠PCB=9090度;∠ABP+∠ACP=4040度;
(2)类比探索:求∠ABP,∠ACP,∠A的关系,并说明理由;
(3)变式探索:如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM,PN仍恰好经过点B和点C,求∠ABP,∠ACP,∠A的关系,并说明理由.
【考点】三角形内角和定理.
【答案】90;40
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/29 11:0:12组卷:1316引用:11难度:0.8