如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知AE=2c,这时我们把关于x的形如ax2+2cx+b=0的一元二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于x的“勾系一元二次方程”ax2+2cx+b=0必有实数根;
(3)若x=-1是“勾系一元二次方程”ax2+2cx+b=0的一个根,且四边形ACDE的周长是62,求△ABC面积.
AE
=
2
c
a
x
2
+
2
cx
+
b
=
0
a
x
2
+
2
cx
+
b
=
0
a
x
2
+
2
cx
+
b
=
0
2
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/2 1:0:1组卷:14746引用:39难度:0.1
相似题
-
1.如图,矩形ABCD中,AB=8cm,BC=6cm,点M从点A出发,沿着AB→BC的方向以4cm/s的速度向终点C匀速运动;点N从点B出发,沿着BC→CD的方向以3cm/s的速度向终点D匀速运动;点M,N同时出发,当M,N中任何一个点到达终点时,另一个点同时停止运动,点M运动时间为t(s),连接MN,△BMN的面积为S(cm2).
(1)求S关于t的函数解析式,并直接写出自变量t的取值范围;
(2)△BMN的面积可以是矩形ABCD面积的吗?如能,求出相应的t值,若不能,请说明理由.14发布:2025/1/13 8:0:2组卷:260引用:4难度:0.6 -
2.如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1cm/秒的速度移动,点Q从点B开始沿BC边向点C以2cm/秒的速度移动.
(1)如果P、Q分别从A、B同时出发,几秒后△PBQ是等腰直角三角形?
(2)如果P、Q分别从A、B同时出发,几秒后△PBQ的面积等于3cm2?
(3)如果P、Q分别从A、B同时出发,四边形APQC的面积是△ABC面积的三分之二?发布:2025/1/20 8:0:1组卷:125引用:1难度:0.5 -
3.如图,在△ABC中,∠C=90°,AB=10cm,AC=8cm,点P,Q同时由A,C两点出发,分别沿AC,CB方向移动,它们的
速度都是2cm/s.
(1)设经过t秒后,那么在△PCQ中,此时线段,线段CQ长为cm,PC长为cm.
(2)经过几秒,P,Q相距cm?210发布:2025/1/24 8:0:2组卷:205引用:6难度:0.3