饲养场准备利用现成的一堵“7”字形的墙面(粗线A-B-C表示墙面)建饲养场,已知AB⊥BC,AB=3米,BC=15米,现计划用总长为38米的篱笆围建一个“日”字形的饲养场BDEF,并在每个区域开一个宽2米的门,如图(细线表示篱笆,饲养场中间用篱笆GH隔开),点F在线段BC上.
(1)设EF的长为x米,则DE=(45-3x)(45-3x)米;(用含x的代数式表示)
(2)若围成的饲养场BDEF的面积为132平方米,求饲养场的宽EF的长;
(3)所围成的饲养场BDEF的面积能否为171平方米?如果能达到,求出EF的长;如果不能,请说明理由.
【考点】一元二次方程的应用.
【答案】(45-3x)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/6 8:0:9组卷:627引用:4难度:0.6
相似题
-
1.为帮助人民应对疫情,某药厂下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,已知每次下降的百分率相同.
(1)求这种药品每次降价的百分率是多少?
(2)已知这种药品的成本为100元,若按此降价幅度再一次降价,药厂是否亏本?发布:2025/6/18 6:0:1组卷:978引用:13难度:0.8 -
2.如图,在△ABC中,AC=50m,BC=70m,∠C=90°,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由点C开始以3m/s的速度沿着射线CB匀速移动,当△PCQ的面积等于300m2时,运动时间为( )
发布:2025/6/18 9:0:1组卷:265引用:2难度:0.7 -
3.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?发布:2025/6/18 9:0:1组卷:2247引用:10难度:0.1