问题:探究一次函数y=kx+k+2(k是不为0常数)图象的共性特点,探究过程:小明尝试把x=-1代入时,发现可以消去k,竟然求出了y=2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k+2的图象一定经过定点(-1,2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把像这样的一次函数的图象定义为“点旋转直线”.已知一次函数y=(k+3)x+(k-1)的图象是“点旋转直线”
(1)一次函数y=(k+3)x+(k-1)的图象经过的定点P的坐标是(-1,-4)(-1,-4).
(2)已知一次函数y=(k+3)x+(k-1)的图象与x轴、y轴分别相交于点A、B
①若△OBP的面积为3,求k值;
②若△AOB的面积为1,求k值.
【考点】一次函数图象上点的坐标特征.
【答案】(-1,-4)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1067引用:2难度:0.3
相似题
-
1.如图,直线y=-x+2与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴于点C,则点C坐标为( )
发布:2024/12/28 9:0:4组卷:320引用:3难度:0.6 -
2.如果点P(2,k)在直线y=-2x+2上,那么点P到x轴的距离为( )
发布:2024/12/23 12:0:2组卷:360引用:3难度:0.8 -
3.在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、AnBnBn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点B1、B2、B3、…、Bn均在x轴上.若点B1的坐标为(1,0),点B2的坐标为(3,0),则点An的坐标为( )
发布:2024/12/23 12:30:2组卷:292引用:5难度:0.7