【观察】如图1是小慧购买的某款黄金分制尺实物图,小慧观察测量发现:OA=OB,CB=CD,OE=EF=FC=CO.在阅读使用说明书后思考提出一些问题,请你完成下列的解答.

【思考】(1)在该黄金分制尺中OCCB应等于=5-125-12;
(2)根据小慧测量结果,求证:A、D、B三点共线;
【创新】(3)深度学习探究:根据上述对话,在OA=OB的条件下,至少再补充下列哪几个选项作为条件,才能制作出该尺.
①OE=CF;
②OC=CF;
③CD=CB;
④OE=OC;
⑤OC=EF,
我选择条件是 ①③⑤①③⑤;(填序号)
【应用】如图3,在△ABC中,∠BAC=90°,AB=1,AC=2,调节图2中C、E、F三点到适当位置,仅使用该分割尺,可直接作出以AC为直径的圆与边BC的交点D,请写出你的设计方案.(要求:写出点C,E、F必须满足的条件)
OC
CB
5
-
1
2
5
-
1
2
2
【考点】圆的综合题.
【答案】;①③⑤
5
-
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/12 8:0:8组卷:48引用:1难度:0.1
相似题
-
1.如图1,以点O为圆心,半径为4的圆交x轴于A,B两点,交y轴于C,D两点,点P为劣弧AC上的一动点,延长CP交x轴于点E;连接PB,交OC于点F.
(1)若点F为OC的中点,求PB的长;
(2)求CP•CE的值;
(3)如图2,过点O作OH∥AP交PD于点H,当点P在弧AC上运动时,连接AC,PC.试问△APC与△OHD相似吗?说明理由;的值是否保持不变?若不变,试证明,求出它的值;若发生变化,请说明理由.APDH发布:2025/6/24 18:30:1组卷:272引用:1难度:0.5 -
2.下面是“用三角板画圆的切线”的画图过程.
如图1,已知圆上一点A,画过A点的圆的切线.画法:
(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.则直线AD就是过点A的圆的切线.
请回答:①这种画法是否正确 (是或否);
②你判断的依据是:.发布:2025/6/25 8:0:1组卷:19引用:1难度:0.4 -
3.如图,已知⊙O′与x轴交于A、B两点,与y轴交于C、D两点,圆心O′的坐标是(1,-1),半径为
.5
(1)比较线段AB与CD的大小;
(2)求A、B、C、D四点的坐标;
(3)过点D作⊙O′的切线,试求这条切线的解析式.发布:2025/6/24 20:0:2组卷:43引用:1难度:0.5