观察下列等式:
第1个等式:a1=11×3=12×(1-13);
第2个等式:a2=13×5=12×(13-15);
第3个等式:a3=15×7=12×(15-17);
…
青解答下列问题:
(1)按以上规律列出第5个等式:a5=19×11=12(19-111)19×11=12(19-111).
(2)用含有n的代数式表示第n个等式:an=1(2n-1)(2n+1)1(2n-1)(2n+1)=12(12n-1-12n+1)12(12n-1-12n+1)(n为正整数);
(3)求a1+a2+…+a100的值.
a
1
=
1
1
×
3
=
1
2
×
(
1
-
1
3
)
a
2
=
1
3
×
5
=
1
2
×
(
1
3
-
1
5
)
a
3
=
1
5
×
7
=
1
2
×
(
1
5
-
1
7
)
1
9
×
11
=
1
2
(
1
9
-
1
11
)
1
9
×
11
=
1
2
(
1
9
-
1
11
)
1
(
2
n
-
1
)
(
2
n
+
1
)
1
(
2
n
-
1
)
(
2
n
+
1
)
1
2
(
1
2
n
-
1
-
1
2
n
+
1
)
1
2
(
1
2
n
-
1
-
1
2
n
+
1
)
【考点】规律型:数字的变化类;列代数式.
【答案】;;
1
9
×
11
=
1
2
(
1
9
-
1
11
)
1
(
2
n
-
1
)
(
2
n
+
1
)
1
2
(
1
2
n
-
1
-
1
2
n
+
1
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/18 13:0:1组卷:297引用:4难度:0.5