在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.
材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一.所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.
例:已知:xx2+1=14,求代数式x2+1x2的值.
解:∵xx2+1=14,∴x2+1x=4
即x2x+1x=4∴x+1x=4∴x2+1x2=(x+1x)2-2=16-2=14
材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.
例:若2x=3y=4z,且xyz≠0,求xy+z的值.
解:令2x=3y=4z=k(k≠0)
则x=k2,y=k3,z=k4∴xy+z=12k13k+14k=12712=67
根据材料回答问题:
(1)已知xx2-x+1=12,则x+1x=33.
(2)解分式方程组:mn3m+2n=3 mn2m+3n=5
(3)若yzbz+cy=zxcx+az=xyay+bx=x2+y2+z2a2+b2+c2,x≠0,y≠0,z≠0,且abc=5,求xyz的值.
x
x
2
+
1
=
1
4
x
2
+
1
x
2
x
x
2
+
1
=
1
4
x
2
+
1
x
=
4
x
2
x
+
1
x
=
4
x
+
1
x
=
4
x
2
+
1
x
2
=
(
x
+
1
x
)
2
-
2
=
16
-
2
=
14
x
y
+
z
x
=
k
2
,
y
=
k
3
,
z
=
k
4
x
y
+
z
=
1
2
k
1
3
k
+
1
4
k
=
1
2
7
12
=
6
7
x
x
2
-
x
+
1
=
1
2
x
+
1
x
mn 3 m + 2 n = 3 |
mn 2 m + 3 n = 5 |
yz
bz
+
cy
=
zx
cx
+
az
=
xy
ay
+
bx
=
x
2
+
y
2
+
z
2
a
2
+
b
2
+
c
2
【答案】3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/18 4:0:2组卷:2315引用:2难度:0.3