如图,一次函数y=kx+b的图象交x轴于点A,OA=4,与正比例函数y=-3x的图象交于点B,点B的横坐标为-1.
(1)求一次函数y=kx+b的解析式;
(2)若点C在y轴上,且满足S△BOC=12S△AOB,求点C的坐标;
(3)一次函数y=kx+b有一点D,点D的纵坐标为1,点M为坐标轴上一动点,在函数y=-3x上确定一点N,使得以点B,D,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一个情况的过程.
1
2
【考点】一次函数综合题.
【答案】(1)y=x+4;
(2)点C的坐标为(0,6)或(0,-6);
(3)点N的坐标为(-,2)或(-,4)或(,-2)或N(2,-6)或(-4,12)或(-2,6).
(2)点C的坐标为(0,6)或(0,-6);
(3)点N的坐标为(-
2
3
4
3
2
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/4 8:0:9组卷:604引用:4难度:0.3
相似题
-
1.如图,在平面直角坐标系xOy中,直线y=-
x+4与x轴、y轴分别交于点A、点B,点D(0,-6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.43
(1)求点A、B、C的坐标;
(2)求△ADE的面积;
(3)y轴上是否存在一点P,使得S△PAD=S△ADE,若存在,请直接写出点P的坐标;若不存在,请说明理由.12发布:2025/6/15 23:30:1组卷:4958引用:5难度:0.3 -
2.如图,在平面直角坐标系中,直线y=-
x+15分别交x轴、y轴于点A,B,交直线y=34x于点M.动点C在直线AB上以每秒3个单位的速度从点A向终点B运动,同时,动点D以每秒a个单位的速度从点O沿OA的方向运动,当点C到达终点B时,点D同时停止运动,设运动时间为t秒.12
(1)求点A的坐标和AM的长.
(2)当t=5时,线段CD交OM于点P,且PC=PD,求a的值.
(3)在点C的整个运动过程中,
①直接用含t的代数式表示点C的坐标.
②利用(2)的结论,以C为直角顶点作等腰直角△CDE(点C,D,E按逆时针顺序排列).当OM与△CDE的一边平行时,求所有满足条件的t的值.发布:2025/6/16 6:0:1组卷:560引用:4难度:0.2 -
3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间t(秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.
(1)s与t之间的函数关系式是:;
(2)与图③相对应的P点的运动路径是:;P点出发 秒首次到达点B;
(3)写出当3≤s≤8时,y与s之间的函数关系式,并在图③中补全函数图象.发布:2025/6/16 8:0:2组卷:323引用:39难度:0.1