如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D.
(1)求证:△ABD∽△ACB;
(2)将△ABD绕点A顺时针旋转α(0°<α<180°)得到△AEF,其中E是点B的对应点.连接CE,取CE中点G,连接GB,GF.
①求证:GB=GF;
②连接BF,若AB=4,BC=3,求△BGF面积的最大值.
【考点】相似形综合题.
【答案】(1)证明见解析;
(2)①证明见解析;②.
(2)①证明见解析;②
243
25
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/11 7:0:8组卷:15引用:2难度:0.1
相似题
-
1.在Rt△ABC中,∠C=90°,AC=40cm,BC=30cm.现有动点P从点A出发,沿线段AC向点C方向运动:动点Q从点C出发,沿线段CB向点B方向运动.如果点P的速度是8cm/s,点Q的速度是4cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:
(1)当t=3时,P、Q两点之间的距离是多少?
(2)若△CPQ的面积为S,求S关于t的函数关系式.
(3)当t为多少时,以点C,P,Q为顶点的三角形与△ABC相似?发布:2025/5/24 11:0:1组卷:123引用:2难度:0.2 -
2.如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为倍角三角形,并称这两个角的公共边为底边.
例如:若△ABC中,∠A=2∠B,则△ABC为以边AB为底边的倍角三角形.
(1)已知△ABC为倍角三角形,且∠ABC=2∠C.
①如图1,若BD为△ABC的角平分线,则图中相等的线段有 ,图中相似三角形有 ;
②如图2,若AC的中垂线交边BC于点E,连接AE,则图中等腰三角形有 .
问题解决
(2)如图3,现有一块梯形板材ABCD,AD∥BC,∠A=90°,AB=48,BC=132,AD=68.工人师傅想用这块板材裁出一个△BCP型部件,使得点P在梯形ABCD的边上,且△BCP为以BC为底边的倍角三角形.工人师傅在这块板材上的作法如下:
①作BC的中垂线l交BC于点E;
②在BC上方的直线l上截取EF=33,连接CF并延长,交AD于点P;
③连接BP,得△BCP.
1)请问,若按上述作法,裁得的△BCP型部件是否符合要求?请证明你的想法.
2)是否存在其它满足要求的△BCP?若存在,请画出图形并求出CP的长;若不存在,请说明理由.发布:2025/5/24 13:30:2组卷:255引用:4难度:0.1 -
3.(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M,填空:的值为;∠AMB的度数为,ACBD
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M,请判断的值及∠AMB的度数,并说明理由.ACBD发布:2025/5/24 12:30:1组卷:917引用:7难度:0.3