某种鱼迁入一生态系统后.在无人为干预的条件下.这种鱼的种群在10个生长周期内的自然生长速率(数量增长的百分率)与时间的关系(部分)如下表(每周期约3个月):
第0周期 | 第1周期 | 第2周期 | 第3周期 | 第4周期 | |
生长速率(%) | 0 | 18 | 32 | 42 | 48 |
(1)在无人为干预条件下,根据所学的函数知识,应该选择哪一种函数模型(一次函数或反比例函数或二次函数)来描述该鱼种群的自然生长速率随生长周期变化的规律,并求出函数解析式;
(2)在无人为干预条件下,用函数图象描述该鱼种群生长速率与生长周期之间的关系,则下列A,B,C三个图象中最合理的是哪一个图象?请说明理由.

(3)为了保证该鱼种群的可持续生长,考虑在适当时机进行捕获,问:最佳捕获时期是什么时期?请说明理由.
【考点】二次函数的应用.
【答案】(1)应该选择二次函数来描述该鱼种群的自然生长速率随生长周期变化的规律;函数解析式为y=-2x2+20x;
(2)图象A最合理;
(3)最佳捕获时期是第5周期.
(2)图象A最合理;
(3)最佳捕获时期是第5周期.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/23 5:0:2组卷:94引用:1难度:0.5
相似题
-
1.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m.
(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.发布:2025/6/17 7:0:2组卷:6613引用:117难度:0.1 -
2.青岛十九中新校广场上拟建造一圆形喷水池,在水池中央垂直于水面处要安装一个柱子OA,水流由柱子顶端A处的喷头喷出,喷出的水流呈抛物线形,O点恰好在水面中心,OA为1.5m,水流最高点为B,AB与水平面成45°角,B点距离水面的垂直高度为3.5m.
(1)按如图所示的平面直角坐标系,求抛物线的解析式;
(2)喷水池的半径至少为多少米,才能使水流不至于落到水池外?发布:2025/6/17 7:30:2组卷:147引用:2难度:0.6 -
3.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.
发布:2025/6/17 8:0:1组卷:6961引用:55难度:0.5