若整式A只含有字母x,且A的次数不超过3次,令A=ax3+bx2+cx+d,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M(b+d,a+b+c+d)为整式A的中雅点,我们规定次数超过3次的整式没有中雅点.例如,若整式A=2x2-5x+4,则a=0,b=2,c=-5,d=4,故A的中雅点为(6,1).
(1)若A=x3+x2-2x+4,则A的中雅点坐标为 (5,4)(5,4).
(2)若整式B=-9x+8,整式C是整式B与(x+3)2的乘积,求整式C的中雅点坐标.
(3)若整式D=x-3,整式E是只含有字母x的一次一项式,整式F是整式E的平方与整式D的乘积,若整式F的中雅点为(-3,-2),求整式E的表达式.
【答案】(5,4)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/7 14:0:8组卷:391引用:2难度:0.7
相似题
-
1.阅读下列题目的解题过程:
已知a、b、c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;
(2)错误的原因为:;
(3)本题正确的结论为:.发布:2024/12/23 18:0:1组卷:2626引用:25难度:0.6 -
2.若a是整数,则a2+a一定能被下列哪个数整除( )
发布:2024/12/24 6:30:3组卷:418引用:7难度:0.6 -
3.阅读理解:
能被7(或11或13)整除的特征:如果一个自然数末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是7(或11或13)的倍数,则这个数就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法验证67822615是7的倍数(写明验证过程);
(2)若对任意一个七位数,末三位所表示的数与末三位以前的数字所表示的数之差(大数减小数)是11的倍数,证明这个七位数一定能被11整除.发布:2025/1/5 8:0:1组卷:134引用:3难度:0.4