如图1,在Rt△ABC中,AB=AC=4,AD⊥BC于D,E为AB边上的点,过A、D、E三点的⊙O交AC于F,连接DE,DF.

(1)求证:AE=CF;
(2)如图2,点P为弧DE上一动点,连接PD,PE,PF.在点P运动过程中,试探索PD,PE,PF之间的数量关系,并证明;
(3)如图3,在扇形ABC中,M为弧BC上任意一点,过点M作MN⊥AC于点N,设Q为△AMN的内心,当点M从点B运动到点C时,请直接写出内心Q所经过的路径长.
【考点】圆的综合题.
【答案】(1)证明见解答过程;
(2)PE+PD=PF,证明见解答过程;
(3)内心Q所经过的路径长为π.
(2)PE+
2
(3)内心Q所经过的路径长为
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/11 8:0:9组卷:98引用:1难度:0.3
相似题
-
1.如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.
(1)求证:直线CE是圆O的切线.
(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;
(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.发布:2025/1/28 8:0:2组卷:782引用:2难度:0.1 -
2.如图,AB是圆O的直径,弦CD与AB交于点H,∠BDC=∠CBE.
(1)求证:BE是圆O的切线;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的长;
(3)如图,若CD∥BE,作DF∥BC,满足BC=2DF,连接FH、BF,求证:FH=BF.发布:2025/1/28 8:0:2组卷:100引用:1难度:0.1 -
3.如图,AB是圆O的直径,AB=6,D是半圆ADB上的一点,C是弧BD的中点.
(1)若∠ABD=30°,求BC的长和由弦BC、BD、和弧CD围成的图形面积;
(2)若弧AD的度数是120度,在半径OB上是否存在点P,使得PC+PD的值最小,如果存在,请在备用图中画出P的位置,并求PC+PD的最小值,如果不存在,请说明理由.发布:2025/1/28 8:0:2组卷:44引用:0难度:0.3