试卷征集
加入会员
操作视频

如图①,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)【证明与推断】:
①求证:四边形CEGF是正方形;
②推断:
AG
BE
的值为
2
2

(2)【探究与证明】:将正方形CEGF绕点C顺时针方向旋转α度(0°<α<45°),如图②所示,试探究线段AG与BE之间的数量关系,并说明理由;
(3)【拓展与运用】:正方形CEGF在旋转过程中,当A,G,F三点在同一直线上时,如图③所示,延长CG交AD于点H.若AG=3,
GH
=
2
,求BC的长.

【考点】四边形综合题
【答案】
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/1 2:0:1组卷:471引用:2难度:0.1
相似题
  • 1.如图,在△ABC中,∠C=90°,AC=10,BC=20,点D从点A出发,以每秒
    5
    个单位长度的速度沿AB方向运动,到点B停止.当点D与A、B两点不重合时,作DP⊥AC交AC于点P,作DQ⊥BC交BC于点Q.E为射线CA上一点,且∠CQE=∠BAC.设点D的运动时间为t(秒).
    (1)AB的长为

    (2)求CQ的长.(用含有t的代数式表示)
    (3)线段QE将矩形PDQC分成两部分图形的面积比为1:3时,求t的值.
    (4)当t为某个值时,沿PD将以D、E、Q、A为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的t值.

    发布:2025/5/23 6:30:1组卷:84引用:2难度:0.1
  • 2.(1)感知:如图①,四边形ABCD和CEFG均为正方形,BE与DG的数量关系为

    (2)拓展:如图②,四边形ABCD和CEFG均为菱形,且∠A=∠F,请判断BE与DG的数量关系,并说明理由;
    (3)应用:如图③,四边形ABCD和CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,求菱形CEFG的面积.

    发布:2025/5/23 5:30:3组卷:229引用:1难度:0.3
  • 3.如图所示,在平面直角坐标系中,正方形OABC在第一象限,A(8,0).点M,N分别为边OA,AB上的动点,且点OM=AN,D,E分别为CM,ON的中点,F是DE的中点.设OM=t,点P的纵坐标为y,请解决下列问题:
    (1)判断CM与ON的位置关系,并写出证明过程;
    (2)请求出y关于t的函数表达式,并直接写出y最大时,点P的坐标;
    (3)在点M从点O运动到点A的过程中,设点F走过的路线长为L,线段PF扫过的面积为S,请直接写出L与S的值.

    发布:2025/5/23 6:0:2组卷:77引用:1难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正