如图,在菱形ABCD中,BC=10,E是边BC上一点,过点E作EH⊥BD,垂足为点H,点G在边AD上,且GD=CE,联结GE,分别交BD、CH于点M、N.
(1)已知sin∠DBC=35,
①当EC=4时,求△BCH的面积:
②当CH=HM+1时,求CE的值;
(2)延长AH交边BC于点P,当设CE=x,请用含x的代数式表示HPCN的值.

sin
∠
DBC
=
3
5
HP
CN
【考点】相似形综合题.
【答案】(1)①;
②CE=;
(2).
72
5
②CE=
25
8
(2)
HP
CN
=
10
-
x
2
x
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/23 11:0:2组卷:147引用:1难度:0.1
相似题
-
1.数学课上,王老师出示问题:如图1,将边长为5的正方形纸片ABCD折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.
(1)观察操作结果,在图1中找到一个与△DEP相似的三角形,并证明你的结论;
(2)当点P在边CD的什么位置时,△DEP与△CPG面积的比是9:25?请写出求解过程;
(3)将正方形换成正三角形,如图2,将边长为5的正三角形纸片ABC折叠,使顶点A落在边BC上的点P处(点P与B、C不重合),折痕为EF,当点P在边BC的什么位置时,△BEP与△CPF面积的比是9:25?请写出求解过程.发布:2025/6/15 22:0:1组卷:1072引用:9难度:0.2 -
2.如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N.
(1)求证:△BFM∽△NFA;
(2)试探究线段FM、DF、FN之间的数量关系,并证明你的结论;
(3)若AC=BC,DN=12,ME:EN=1:2,求线段AC的长.发布:2025/6/16 11:30:2组卷:851引用:7难度:0.3 -
3.在△ABC中,CD是中线,E,F分别为BC,AC上的一点,连接EF交CD于点P.
(1)如图1,若F为AC的中点,CE=2BE,求的值;DFEC
(2)如图2,设=m,CEBC=n(n<CFAC),若m+n=4mn,求证:PD=PC;12
(3)如图3,F为AC的中点,连接AE交CD于点Q,若QD=QP,直接写出的值.BEEC发布:2025/6/15 15:0:1组卷:334引用:2难度:0.3