定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集,
如:y≥x-2是二元一次不等式,(12,1),(1,-1),(-1,-1)等都是该不等式的解.因为有序实数对可以看成直角坐标平面内点的坐标,二元一次不等式(组)的解集就可看成直角坐标系内的点构成的集合.所以y≥x-2的解集在坐标系内所对应的点形成的图形为如图,阴影部分区域G.
(1)设x+y-6≤0 x-1≥0
y-2≥0
的解集在坐标系内所对应的点形成的图形为F.
①在图1中画出图形F(用阴影部分表示),并求出图形F的面积;
②反比例函数y=kx(x>0)的图象和图形F有公共点,求k的取值范围;
(2)设-1≤2x-y≤1 -1≤2x+y≤1
的解集围成的图形为M,直接写出抛物线y=mx2-2mx+m+12与图形M有交点时m的取值范围.
1
2
| ||
y - 2 ≥ 0 |
k
x
- 1 ≤ 2 x - y ≤ 1 |
- 1 ≤ 2 x + y ≤ 1 |
1
2
【考点】二次函数综合题.
【答案】(1)①面积为4.5;
②2≤k≤9;
(2).
②2≤k≤9;
(2)
-
2
≤
m
<
0
或
0
<
m
≤
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/14 8:0:9组卷:146引用:1难度:0.2
相似题
-
1.如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=-x2+2x+3经过点A、C、A′三点.
(1)求A、A′、C三点的坐标;
(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;
(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.发布:2025/6/19 9:0:1组卷:1341引用:51难度:0.5 -
2.如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5
,且5=ODOE,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-43x2+116x+c经过点E,且与AB边相交于点F.12
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.发布:2025/6/19 9:0:1组卷:1930引用:51难度:0.5 -
3.如图,抛物线 y=
x2-12x-2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.32
(1)求A、B、C三点的坐标.
(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由.
(3)当点M运动到什么位置时,四边形ABMC的面积最大,并求出此时M点的坐标和四边形ABMC的最大面积.发布:2025/6/19 9:0:1组卷:2419引用:52难度:0.3