如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(a,0),B(0,b),C(2,4),且方程3x2a+b+11-2y3a-2b+9=0是关于x,y的二元一次方程.

(1)求A、B两点坐标;
(2)如图1,设D为坐标轴上一点,且满足S△ABD=12S△ABC,求D点坐标.
(3)平移△ABC得到△EFG(A与E对应,B与F对应,C与G对应),且点E的横、纵坐标满足关系式:5xE-yE=4,点F的横、纵坐标满足关系式:43xF-yF=4,求G的坐标.
1
2
4
3
【考点】三角形综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/24 8:0:9组卷:1285引用:5难度:0.2
相似题
-
1.如图1和图2,AD是△ABC中BC边上的中线,E为AC边上的一点,过点B作BF∥AC交ED的延长线于点F.
(1)求证:△BDF≌△CDE;
(2)如图1,若CE=10,AE:BF=2:5,试求AC的长;
(3)如图2,当E为AC边的中点时,若△ABC的面积为20,请直接写出△BDF的面积是多少.发布:2025/6/8 15:30:1组卷:23引用:1难度:0.4 -
2.如图,在平面直角坐标系中,A(0,a),C(b,3),且满足|4+a|+
=0,过点C作CB⊥y轴于点B,连接AC,动点P从点B出发沿射线BC以每秒1个单位长度的速度运动(点P不与点C重合),设运动的时间为1秒.b-3
(1)求a,b的值;
(2)设△APC的面积为S,用含t的式子表示S,并写出t的取值范围;
(3)在x轴上是否存在点M,使△ABM的面积等于△ABC的面积的2倍?若存在,请直接写出点M的坐标,若不存在,请说明理由.发布:2025/6/8 15:0:1组卷:18引用:1难度:0.1 -
3.已知线段AB⊥l于点B,点D在直线l上,分别以AB、AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.
(1)当点F在线段BD上时,如图①,直接写出DF,CE,CF之间的关系 .
(2)当点F在线段BD的延长线上时,如图②,当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,在图②、图③中选一个进行证明.
(3)在(1)、(2)的条件下,若BD=2BF,EF=6,请直接写出CF的值.发布:2025/6/8 2:0:5组卷:424引用:2难度:0.1