【教材呈现】苏科版义务教育数学教科书七下第42页第20题,是一道研究双内角平分线的夹角和双外角平分线夹角的数学问题,原题如下.
在△ABC中,∠A=n°.
(1)设∠B、∠C的平分线交于点O,求∠BOC的度数;
(2)设△ABC的外角∠CBD、∠BCE的平分线交于点O′,求∠BO′C的度数;
(3)∠BOC与∠BO′C有怎样的数量关系?
【问题解决】聪聪对上面的问题进行了研究,得出以下答案:
如图1,在△ABC中,∠A=n°.

(1)∠ABC、∠ACB的平分线交于点O,则∠BOC的度数为 90°+12n°90°+12n°;
(2)△ABC的外角∠CBD、∠BCE的平分线交于点O′,则∠BO′C的度数为 90°-12n°90°-12n°;
(3)∠BOC与∠BO'C的数量关系是 ∠BOC+∠BO'C=180°∠BOC+∠BO'C=180°.
(4)【问题深入】:
如图2,在△ABC中,∠ABC、∠ACB的角平分线交于点O,将△ABC沿MN折叠使得点A与点O重合,请直接写出∠1+∠2与∠BOC的一个等量关系式;
(5)如图3,过△ABC的外角∠CBD、∠BCE的平分线的交点O′,作直线PQ交AD于点P,交AE于点Q.当∠APQ=∠AQP时,∠CO′Q与∠ABC有怎样的数量关系?请直接写出结果.
90
°
+
1
2
n
°
90
°
+
1
2
n
°
90
°
-
1
2
n
°
90
°
-
1
2
n
°
【考点】三角形内角和定理.
【答案】;;∠BOC+∠BO'C=180°
90
°
+
1
2
n
°
90
°
-
1
2
n
°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/11 8:0:9组卷:506引用:2难度:0.5
相似题
-
1.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则:
(1)∠BAC=2
(2)BC=2
(3)发布:2025/1/24 8:0:2组卷:45引用:1难度:0.5 -
2.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则:
(1)∠A1=度;
(2)∠A2013=度.发布:2025/1/24 8:0:2组卷:109引用:1难度:0.5 -
3.已知:如图,△ABC中,∠ABC=∠C,BD是∠ABC的平分线,且∠BDE=∠BED,∠A=100°,求∠DEC的度数.
发布:2025/1/24 8:0:2组卷:117引用:4难度:0.5