试卷征集
加入会员
操作视频

下面是某同学对多项式(a2-4a)(a2-4a+8)+16进行因式分解的过程:
解:设a2-4a=b,
(a2-4a)(a2-4a+8)+16
=b(b+8)+16(第一步)
=b2+8b+16(第二步)
=(b+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)该同学第二步到第三步运用了因式分解的
C
C

A.提取公因式
B.两数和乘两数差公式
C.两数和的完全平方公式
D.两数差的完全平方公式
(2)该同学因式分解的结果并不彻底,请直接写出因式分解的最后结果:
(a-2)4
(a-2)4

(3)请你模仿以上方法,尝试对多项式(a2-2a-1)(a2-2a+3)+4进行因式分解.

【考点】因式分解的应用
【答案】C;(a-2)4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/4 8:0:5组卷:198引用:3难度:0.5
相似题
  • 1.若一个整数能表示成a2+b2(a、b是整数)的形式,则称这个数为“完美数”,
    例如,5是“完美数”.因为5=22+12
    再如,M=5x2+5y2=x2+y2+4x2+4y2
    =x2+y2+4x2+4y2+4xy-4xy
    =(x+2y)2+(2x-y)2(x、y是整数),所以M也是“完美数”.
    (1)请你再写出一个小于20的“完美数”;
    (2)判断9x2+1+4y2-12xy(x,y是整数)是否为“完美数”;并说明原因.

    发布:2025/6/8 22:30:1组卷:69引用:1难度:0.7
  • 2.如果一个自然数M能分解成a×A,其中a为一位数,A为两位数,且a与A的十位数字的和等于A的个位数字,则称数M为“和数”,将“和数”分解成M=a×A的过程,称为“和分解”,若a与A的十位数字的差等于A的个位数字,则称数M为“差数”,将“差数”分解成M=a×A的过程,称为“差分解”.
    例如:∵245=5×49,5+4=9,∴245为“和数”,
    ∵205=5×41,5-4=1,∴205为“差数”.
    又如∵195=3×65=5×39,3+6≠5,5+3≠9,且3-6≠5,5-3≠9,∴195既不是“和数”也不是“差数”.
    (1)判断236是“和数”吗?115是“差数”吗?并说明理由;
    (2)将一个“和数”M进行“和分解”,即
    M
    =
    m
    ×
    ab
    ,(1≤m≤8,1≤a≤8,2≤b≤9,m,a,b都为整数),将一个“差数”N进行“差分解”,即
    N
    =
    n
    ×
    ac
    ,(2≤n≤9,1≤a≤8,1≤c≤8,n,a,c都为整数),记P(M)=m+a+b,P(N)=n+a+c,若
    P
    M
    P
    N
    能被3整除,求出所有满足题意的M的值.

    发布:2025/6/9 1:30:1组卷:86引用:2难度:0.4
  • 3.若实数x满足x2-x-1=0,则代数式x3-2x2+2023的值为

    发布:2025/6/9 3:30:1组卷:527引用:6难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正