试卷征集
加入会员
操作视频

【问题思考】如图1,点E是正方形ABCD内的一点,过点E的直线AQ,以DE为边向右侧作正方形DEFG,连接GC,直线GC与直线AQ交于点P,则△ADE≌△
CDG
CDG
,通过这两个三角形全等可得线段AE与GC之间的关系为
AE=CG,AE⊥CG
AE=CG,AE⊥CG


【问题类比】
如图2、3,当点E是正方形ABCD外的一点时,【问题思考】中的结论
成立
成立
(填成立或不成立),若成立,请选择图2证明你的结论;若不成立,请选择图3说明理由;
【拓展延伸】
(1)若点E是边长为2的正方形ABCD所在平面内一动点,DE=1【问题思考】中其他条件不变,则BF的取值范围是
2
BF
3
2
2
BF
3
2
(直接写出结果).
(2)若点E是边长为2的正方形ABCD所在平面内一动点,【问题思考】中其他条件不变,则动点P到边BC的最大距离为
2
+
1
2
+
1
(直接写出结果).

【考点】几何变换综合题
【答案】CDG;AE=CG,AE⊥CG;成立;
2
BF
3
2
2
+
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/26 8:0:9组卷:214引用:1难度:0.3
相似题
  • 1.如图①,在等边三角形ABC中,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点.
    (1)观察猜想:△PMN的形状是

    (2)探究证明:把△ADE绕点A按逆时针方向旋转到图②的位置,△PMN的形状是否发生改变?请说明理由.
    (3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AB=3,AD=1,请直接写出△PMN周长的最大值.

    发布:2025/6/14 22:30:1组卷:33引用:1难度:0.5
  • 2.已知,点D是等边△ABC边AB所在直线AB上一动点(点D与点A、B不重合),连接DC,以DC为边在DC上方作等边△DCE,连接AE;
    操作发现:
    (1)如图(1),当动点D在AB上,你能发现线段AE与BD之间的数量关系吗?并证明你发现的结论;
    (2)如图(2),在(1)的条件下,作△DCE关于直线CD对称的△DCF,连接BF,探究AE、BF与BC有何数量关系?并证明你探究的结论;
    拓展探究:
    (3)如图(3),当动点D在BA的延长线上,其他作法与(2)相同,当AE=5,BF=2时,求BC的长度.

    发布:2025/6/14 15:30:1组卷:134引用:2难度:0.2
  • 3.如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC=4,AD=AE=2.连接CD,BE,F,G,H分别是BE,CD,DE的中点,连接GF,FH,GH.
    (1)如图1,当B,A,E三点共线,且D在AC边上时,求线段FH,GH的长;
    (2)如图2,当△ADE绕点A旋转时,求证:△GFH是等腰直角三角形,并直接写出△GFH面积的最大值.

    发布:2025/6/14 15:0:1组卷:139引用:2难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正