试卷征集
加入会员
操作视频

如图,在△ABC中,AC=4,BC=3,∠ACB=90°,点P是线段AC上不与点A重合的动点,过点P作PQ⊥AC交AB边于点Q.将△APQ 绕点P顺时针旋转90°得到△A'PQ',设线段AP的长为4t.
(1)直接用含t的代数式表示线段PQ的长;
(2)当点B落在线段A'Q'上时,求t的值;
(3)设△A'PQ'与△ABC重叠部分的面积为S,当重叠部分为四边形时,求S与t的函数关系式.

【考点】三角形综合题
【答案】(1)3t;
(2)
25
28

(3)S与t的函数关系式为:当0<t≤
4
7
时,S=
144
25
t2;当
25
28
≤t<1时,S=6-6t2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/21 8:0:9组卷:43引用:2难度:0.3
相似题
  • 1.如图,在△ABC中,∠ACB=90°,CA=CB,∠MCN=45°,射线CM交直线AB于点P,过点A作AD⊥CM于点D,直线AD交直线CN于点E,连接BE.
    (1)当点P在线段AB上时,如图①,求证:AD+BE=DE;
    (2)当点P在BA的延长线上时,如图②;当点P在AB的延长线上时,如图③,线段AD,DE,BE之间又有怎样的数量关系?直接写出你的猜想,不必证明.

    发布:2025/5/25 19:30:2组卷:79引用:1难度:0.3
  • 2.已知:在△ABC中,AB=AC,∠BAC=120°,点F是线段BC上一点,D、E是射线AF上两点,且∠ADB=∠BAC,∠AEC=60°.
    (1)如图1,
    ①填空:∠BAE
    ∠ACE;(填“>”或“=”或“<”)
    ②判定三条线段AD,BD,CE的数量关系,并说明理由;
    (2)若∠DBC=15°,则直接写出
    FC
    BF
    的值.

    发布:2025/5/25 17:30:1组卷:278引用:3难度:0.1
  • 3.如图①,在△ABC中,∠ABC=90°,过点B作直线BD交边AC于点D,过点A作AE⊥BD,垂足为点E,过点C作CF⊥BD,垂足为点F,点O为AC的中点,连结OE、OF.
    【证明推断】求证:OE=OF.
    小明给出的思路:先分别延长EO、CF交于点M,再证明△AEO≌△CMO.请你根据小明的思路完成证明过程.
    【拓展应用】如图②,当BC=4AB,∠DBC=45°时,解决下列问题:
    (1)∠EFO的大小为
    度.
    (2)
    OD
    OC
    的值为

    发布:2025/5/25 18:0:1组卷:179引用:2难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正