如图,在直角坐标系中,已知点B的坐标为(-2,0),且OA=OC=8,抛物线y=ax2+bx+c(a≠0)的图象经过A,B,C三点.
(1)求抛物线的表达式;
(2)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标;
(3)在(2)的条件下,E为AC直线上一动点,F为对称轴上一动点,当A,P,E,F四个点为顶点的四边形为平行四边形时,求E点的坐标.
【考点】二次函数综合题.
【答案】(1)y=x2-3x-8;
(2)PD最大值为4,此时点P(4,-12);
(3)点E的坐标为:(9,1)或(-1,-9)或(7,-1).
1
2
(2)PD最大值为4
2
(3)点E的坐标为:(9,1)或(-1,-9)或(7,-1).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/8 5:0:8组卷:452引用:2难度:0.4
相似题
-
1.如图,抛物线y=ax2+
经过△ABC的三个顶点,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.94
(1)求该抛物线的函数关系表达式;
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.发布:2025/6/16 19:30:1组卷:730引用:9难度:0.4 -
2.如图,直线y1=-x+3与x轴于交于点B,与y轴交于点C.抛物线y2=-x2+bx+c经过B、C两点,并与x轴另一个交点为A.
(1)求抛物线y2的解析式;
(2)若点M在抛物线上,且S△MOC=4S△AOC,求点M的坐标;
(3)设点P是线段BC上一动点,过P作PQ⊥x轴,交抛物线于点Q,求线段PQ长度的最大值.发布:2025/6/17 2:0:1组卷:1010引用:3难度:0.3 -
3.如图,已知抛物线y=ax2+bx+c过点A(6,0),B(-2,0),C(0,-3).
(1)求此抛物线的解析式;
(2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
(3)若点Q在x轴上,点G为该抛物线的顶点,且∠QGA=45°,求点Q的坐标.发布:2025/6/16 23:0:1组卷:401引用:5难度:0.5